Monday, January 26, 2015

Pisum sativum, Pea, Batani, Matar




Pisum sativum L.
Family: Fabaceae

Common name: Pea, garden pea, green pea, snap pea
Arabic: بازلاء
Bengali: Matar, মটরশুঁটি
Bulgarian: Грах
Chinese: 豌豆
French: Pois
German: Erbse
Gujarati: Patana, વટાણા
Gurani: Kumanda
Hindi: मटर Matar
Japanese: エンドウ
Kannada: Batgadle, Bahtahna
Malayalam: പട്ടാനീ Pattani
Manipuri: হৌৱাঈথৰক Houwaitharak
Marathi: Vatane
Russian: Горох посевной
Sanskrit: हरेणुः harenu, Renuka, Satila, Triputa
Tamil: பட்டாணி Battani
Telugu: బఠాణి, batani
Urdu: Matar
Vietnamese: Đậu Hà Lan

Description: Annual, Herbs, Vines, twining, climbing, Taproot present, Nodules present, Stems prostrate, trailing, or mat forming, Stems less than 1 m tall, Climbing by tendrils, Stems hollow, or spongy, Stems or young twigs glabrous or sparsely glabrate, Leaves alternate, Leaves petiolate, Stipules conspicuous, Stipules green, triangu late to lanceolate or foliaceous, Stipules persistent, Stipules free, Stipules cordate, lobed, or sagittate, Stipules toothed or laciniate, Leaves compound, Leaves even pinnate, Leaf or leaflet margins entire, Leaflets opposite, Leaflets 2, Leaflets 4, Leaflets 5-9, Leaves glabrous or nearly so, Flowers solitary in axils, or appearing solitary, Flowers in axillary clusters or few-floweredracemes, 2-6 flowers, Inflorescence axillary, Bracts very small, absent or caducous, Flowers zygomorphic, Calyx 5-lobed, Calyx glabrous, Petals separate, Corolla papilionaceous, Petals white, Petals pinkish to rose, Petals blue, lavander to purple, or violet, Banner petal suborbicular, broadly rounded, Wing petals narrow, oblanceolate to oblong, Wing petals incurved, Wing tips obtuse or rounded, Keel tips obtuse or rounded, not beaked, Stamens 9-10, Stamens diadelphous, 9 united, 1 free, Filaments hairy, villous, Style terete, Style sharply bent, Style hairy, Style hairy on one side only, Fr uit a legume, Fruit unilocular, Fruit freely dehiscent, Fruit indehiscent, Fruit elongate, straight, Fruit exserted from calyx, Fruit inflated or turgid, Fruit glabrous or glabrate, Fruit 3-10 seeded, Seeds ovoid to rounded in outline, Seed surface smooth, Seed surface wrinkled or rugose, Seeds olive, brown, or black.

Used in Ayurveda, Unani and Sidha. Root juice given for fever. Seed contraceptive, fungistatic, spermicide, for diabetes, acne and wrinkled skins, wounds and bruises, skin complaints; flour from the seeds emollient and resolvent, applied as a cataplasm. [CRC World Dictionary of Medicinal and Poisonous Plants]

Pea seeds are thought to cause dysentery when eaten raw. In Spain, fl our is considered emollient and resolvent, applied as a cataplasm. The seed  is  regarded  as  contraceptive,  fungistatic and spermacidal. The dried and pulverised seed has been used as a poultice on the skin to treat many types of skin complaints including acne. The  oil  from  the  seed,  administered  once  a month  to  women,  has  shown  promise  in  preventing pregnancy by interfering with the activity of progesterone. [Edible Medicinal and Non-Medicinal Plants V2]

283 Published articles of Pisum sativum
1.    3-Phosphoglycerate dehydrogenase from seedlings of Pisum sativum Slaughter, J.C. and D.D. Davies, Methods in enzymology, 1975. 41: p. 278-81.
2.    4 CHLOROINDOLEACETIC ACID AN ENDOGENOUS AUXIN IN VICIEAE INDUCES ALPHA AMYLASE DE-NOVO SYNTHESIS IN COTYLEDONS OF PISUM-SATIVUM Hirasawa, E. and S. Yamamoto, Planta Medica, 1990. 56(6): p. 609-610.
3.    A 70-kDa chloroplast DNA polymerase from pea (Pisum sativum) that shows high processivity and displays moderate fidelity Gaikwad, A., D.V. Hop, and S.K. Mukherjee, Molecular Genetics and Genomics, 2002. 267(1): p. 45-56.
4.    A chemically induced new pea (Pisum sativum) mutant SGECd(t) with increased tolerance to, a.a.o., cadmium Tsyganov, Viktor E., et al., Annals of Botany, 2007. 99(2): p. 227-237.
5.    A pharmacological study of the seeds of Pisum sativum L. var. Lincoln and Little Marvel Sharaf, A., et al., Egypt Pharm Bull, 1962. 44((4)): p. 105-113.
6.    A serine carboxypeptidase gene (PsCP), e.i.e.s.o.r.a.v.d.i.P.s., is induced by gibberellins Cercos, M., C. Urbez, and J. Carbonell, Plant Molecular Biology, 2003. 51(2): p. 165-174.
7.    Abscisic acid and desiccation-dependent expression of a novel putative SNF5-type chromatin-remodeling gene in Pisum sativum Rios, G., et al., Plant Physiology and Biochemistry, 2007. 45(6-7): p. 427-435.
8.    ACTION DE LA TRIETHYLENE-MELAMINE SUR LES PLANTULES DE PISUM-SATIVUM-L - ESSAIS DE PROTECTION PAR LA BETA-MERCAPTOETHYLAMINE Truhaut, R. and G. Deysson, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 1955. 240(10): p. 1123-1125.
9.    ACTION OF UREA ON HEMAGGLUTININ OF PISUM-SATIVUM Betail, G., M. Coulet, and J. Guillot, Comptes Rendus Des Seances De La Societe De Biologie Et De Ses Filiales, 1969. 163(8-9): p. 1771-&.
10.    AGROBACTERIUM TUMEFACIENS BACTERIOPHAGES .2. LYSOGENIC B6M STRAIN IN PISUM SATIVUM L AND EFFECT OF GLYCINE ON PHAGE PRODUCTION Kurkdjia.A, Beardsle.R, and Manigaul.P, Annales De L Institut Pasteur, 1968. 114(4): p. 555-&.
11.    Alkylresorcinol homologs in Pisum sativum L. varieties Zarnowski, R. and A. Kozubek, Zeitschrift Fur Naturforschung C-a Journal of Biosciences, 1999. 54(1-2): p. 44-48.
12.    Amelioration of NaCl stress in Pisum sativum Linn El-Mashad, A.A.-A.A. and E.A.-R. Kamel, Indian Journal of Experimental Biology, 2001. 39(5): p. 469-475.
13.    Amino Acid Composition and Antioxidant Properties of Pea Seed (Pisum sativum L.) Enzymatic Protein Hydrolysate Fractions Pownall, T.L., C.C. Udenigwe, and R.E. Aluko, Journal of Agricultural and Food Chemistry, 2010. 58(8): p. 4712-4718.
14.    An antifungal protein from the pea Pisum sativum var. arvense Poir Wang, H.X. and T.B. Ng, Peptides, 2006. 27(7): p. 1732-1737.
15.    AN EXPERIMENTAL-STUDY ON DIFFERENTIAL-DIAGNOSIS OF TUMOR FROM INFLAMMATION BY USING I-125 LABELED PISUM-SATIVUM AGGLUTININ Kojima, S. and M. Jay, European Journal of Nuclear Medicine, 1987. 13(9): p. 474-477.
16.    Antibacterial activities of Mentha piperita, P.s.a.M.c.S., Saeed and T. Perween, Pakistan Journal of Botany, 2005. 37(4): p. 997-1001.
17.    Antibacterial activities of Mentha piperita, P.s.a.M.c.S., S. and P. Tariq, Pakistan Journal of Botany, 2005. 37(4): p. 997-1001.
18.    Anti-fertility activity of Pisum sativum Beiler, J.M., et al., Exptl Med and Surg, 1953. 11((3)): p. 179-185.
19.    Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle Lobo, D.S., et al., Biochemistry, 2007. 46(4): p. 987-996.
20.    Anti-HCV lectin from Egyptian Pisum sativum Al-Sohaimy, S.A., et al., Australian Journal of Basic and Applied Sciences, 2007. 1(3): p. 213-219.
21.    Arsenate toxicity to Pisum sativum: Mineral nutrients, c.c., and phytase activity Paivoke, A. E. A. and L.K. Simola, Ecotoxicology and Environmental Safety, 2001. 49(2): p. 111-121.
22.    Arsenate toxicity to Pisum sativum: Mineral nutrients, c.c., and phytase activity (vol 49, pg 111, 2001) Paivoke, A. E. A. and L.K. Simola, Ecotoxicology and Environmental Safety, 2002. 51(3): p. 229-229.
23.    Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers Noreen, Z. and M. Ashraf, Journal of Plant Physiology, 2009. 166(16): p. 1764-1774.
24.    ATTEMPTS TO OVERCOME ANTI-NUTRITIVE FACTORS IN FIELD BEANS (VICIA-FABA L) AND FIELD PEAS (PISUM-SATIVUM) FED IN DIETS TO LAYING HENS Davidson, J., Proceedings of the Nutrition Society, 1977. 36(2): p. A51-A51.
25.    Auxin-cytokinin and auxin-gibberellin interactions during morphogenesis of the compound leaves of pea (Pisum sativum) DeMason, D.A., Planta, 2005. 222(1): p. 151-166.
26.    Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions Morton, R.L., et al., Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(8): p. 3820-3825.
27.    beta-Ketoacyl-acyl carrier protein synthase III from pea (Pisum sativum L.): properties, i.b.a.n.t.a.a.i.o.a.c.c.e.t.e.J., et al., Planta, 2003. 216(5): p. 752-761.
28.    Binding of mannose-functionalized dendrimers with pea (Pisum sativum) lectin Schlick, K.H., et al., Molecular Pharmaceutics, 2005. 2(4): p. 295-301.
29.    Biochemical changes associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.) Mihoub, A., A. Chaoui, and E. El Ferjani, Comptes Rendus Biologies, 2005. 328(1): p. 33-41.
30.    Biological activity of alpha-galactoside preparations from Lupinus angustifolius L. and Pisum sativum L. seeds Gulewicz, P., et al., Journal of Agricultural and Food Chemistry, 2002. 50(2): p. 384-389.
31.    Biologically active oligosaccharides from pectins of Pisum sativum L. seedlings affecting root generation Zabotina, O.A., et al., Biochemistry-Moscow, 2002. 67(2): p. 227-232.
32.    BLASTIC TRANSFORMATION INDUCED BY AN EXTRACT OF PISUM SATIVUM L IN CULTIVATED LEUCOCYTES Mustier, J. and M. Coulet, Comptes Rendus Des Seances De La Societe De Biologie Et De Ses Filiales, 1967. 161(5): p. 1067-+.
33.    Burdock fructooligosaccharide induces stomatal closure in Pisum sativum Guo, Y., et al., Carbohydrate Polymers, 2013. 97(2): p. 731-735.
34.    Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo Rodriguez-Serrano, M., et al., Plant Cell and Environment, 2006. 29(8): p. 1532-1544.
35.    CALCIUM INFLUENCE ON THE DRY MASS CONTENT AND SURFACE-AREA OF NUCLEI AND CYTOPLASM DURING DIFFERENTIATION OF CORTEX CELLS IN PEA (PISUM-SATIVUM-L) ROOTS TREATED WITH HEAVY-METALS Gabara and J. Romaniuk, Folia Histochemica Et Cytobiologica, 1989. 27(3): p. 149-&.
36.    CALLOSE DEPOSITION DURING GRAVITROPISM OF ZEA-MAYS AND PISUM-SATIVUM AND ITS INHIBITION BY 2-DEOXY-D-GLUCOSE Jaffe, M.J. and A.C. Leopold, Planta, 1984. 161(1): p. 20-26.
37.    Capacitation and acrosome reaction in buffalo bull spermatozoa assessed by chlortetracycline and Pisum sativum agglutinin fluorescence assay Kaul, G., et al., Theriogenology, 2001. 55(7): p. 1457-1468.
38.    CARBOHYDRATE BINDING SPECIFICITY OF LECTIN FROM PEA (PISUM-SATIVUM) Vanwauwe, J.P., F.G. Loontiens, and C.K. Debruyne, Biochimica Et Biophysica Acta, 1975. 379(2): p. 456-461.
39.    Changes in antioxidant gene expression and induction of oxidative stress in pea (Pisum sativum L.) under Al stress Panda, S.K. and H. Matsumoto, Biometals, 2010. 23(4): p. 753-762.
40.    CHARACTERIZATION BY ENZYME-LINKED IMMUNOSORBENT-ASSAY OF MONOCLONAL-ANTIBODIES TO PISUM AND AVENA PHYTOCHROME Cordonnier, M.M., H. Greppin, and L.H. Pratt, Plant Physiology, 1984. 74(1): p. 123-127.
41.    Characterization of pea (Pisum sativum) seed protein fractions Rubio, L.A., et al., Journal of the Science of Food and Agriculture, 2014. 94(2): p. 280-287.
42.    Characterization of two novel defense peptides from pea (Pisum sativum) seeds Almeida, M.S., et al., Archives of Biochemistry and Biophysics, 2000. 378(2): p. 278-286.
43.    Chemiluminescence suppression in roots of Pisum sativum L. by various metal ions Rogovin, V.V., V.M. Mushtakova, and V.A. Fomina, Izvestiia Akademii nauk. Seriia biologicheskaia / Rossiiskaia akademiia nauk, 2001(1): p. 125-7.
44.    Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts Pandey, V., V. Dixit, and R. Shyam, Protoplasma, 2009. 236(1-4): p. 85-95.
45.    Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum) Mahajan, S., S.K. Sopory, and N. Tuteja, Febs Journal, 2006. 273(5): p. 907-925.
46.    CLONING OF CHLOROPLAST DNA IN ESCHERICHIA-COLI .2. SOME PROPERTIES OF RECOMBINANT PLASMIDS WITH ECORI-FRAGMENTS OF PISUM-SATIVUM CHLOROPLAST DNA AND CLONING OF CHLOROPLAST RDNA Andrianov, V.M., M.B. Amerkhanova, and Y.P. Vinetsky, Genetika, 1979. 15(11): p. 1918-1924.
47.    CLONING, S.-S.M., EXPRESSION AND CHARACTERIZATION OF FULL-LENGTH CHLOROPLAST NADP-MALATE DEHYDROGENASE FROM PISUM-SATIVUM Reng, W., et al., European Journal of Biochemistry, 1993. 217(1): p. 189-197.
48.    Combinatorial variation in coding and promoter sequences of genes at the Tri locus in Pisum sativum accounts for variation in trypsin inhibitor activity in seeds Page, D., et al., Molecular Genetics and Genomics, 2002. 267(3): p. 359-369.
49.    Comparative proteomic analysis of BTH and BABA-induced resistance in pea (Pisum sativum) toward infection with pea rust (Uromyces pisi) Barilli, E., D. Rubiales, and M. Angeles Castillejo, Journal of Proteomics, 2012. 75(17): p. 5189-5205.
50.    Comparative studies on the 5-aminolaevulinic acid dehydratases from Pisum sativum, E.c.a.S.c.S., N. M., et al., Biochemical Journal, 1996. 320: p. 401-412.
51.    COMPARATIVE STUDY, U.Q.H., OF OSE FACTORS IN LECTINS OF CANAVALIA-ENSIFORMIS L AND PISUM-SATIVUM L Betail, G., M. Coulet, and L. Genaud, Annales De L Institut Pasteur, 1972. 123(5): p. 731-&.
52.    COMPOSITION, P.Q., AND TOXINS OF SEEDS OF GRAIN LEGUMES GLYCINE-MAX, LUPINUS SPP, PHASEOLUS SPP PISUM-SATIVUM, AND VICIA-FABA Hove, E. L., S. King, and G.D. Hill, New Zealand Journal of Agricultural Research, 1978. 21(3): p. 457-462.
53.    compound leaf represent ancestral forms in angiosperms Kumar, Arvind, A.t.i.i.l.c.p.l.a.s.l.-l.s.a.a.o.h.l.a.s.m.i.P.s.s.t.i.s.l.s.a., et al., Journal of Genetics, 2013. 92(1): p. 25-61.
54.    Contribution to the study of the non-specific phyto-agglutinin of Pisum sativum. II. Inhibitory activity of certain sugars and glycoproteins Tronchet, J., Bull Soc Hist Nat Doubs, 1961. 63((2)): p. 49-53.
55.    Control of Erysiphe pisi causing powdery mildew of pea (Pisum sativum) by cashewnut (Anacardium occidentale) shell extract Bahadur, A., et al., Mycobiology, 2008. 36(1): p. 60-65.
56.    Cr(VI) Induces DNA Damage, C.C.A.a.P.A.H.C.a.C.A.S.i.P.s.R., Eleazar, et al., Chemical Research in Toxicology, 2011. 24(7): p. 1040-1047.
57.    CULTURE PISUM-SATIVUM-D COPPER SALTS Boiron, M., T.I.O.H.T.T.F.P.C.I.H.A.A.G.T.S.E.F.T.P.A.O.S.O.I.D.A.P.C.T.T., G. Netien, and A. Cier, Lyon Pharmaceutique, 1967. 18(1): p. 41-41.
58.    D-chiro-Inositol affects accumulation of raffinose family oligosaccharides in developing embryos of Pisum sativum Lahuta, L.B. and T. Dzik, Journal of Plant Physiology, 2011. 168(4): p. 352-358.
59.    Determination of cadmium and lead species and phytochelatins in pea (Pisum sativum) by HPLC-ICP-MS and HPLC-ESI-MSn Baralkiewicz, D., et al., Talanta, 2009. 79(2): p. 493-498.
60.    Developmental stability of a leaf of Pisum sativum L. under the influence of formaldehyde in a wide range of doses Erofeeva, E.A., Ontogenez, 2012. 43(5): p. 320-4.
61.    Dietary raw peas (Pisum sativum L.) reduce plasma total and LDL cholesterol and hepatic esterified cholesterol in intact and ileorectal anastomosed pigs fed cholesterol-rich diets Martins, J.M., et al., Journal of Nutrition, 2004. 134(12): p. 3305-3312.
62.    Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad) Dixit, V., V. Pandey, and R. Shyam, Journal of Experimental Botany, 2001. 52(358): p. 1101-1109.
63.    Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation Van Chung, M., et al., Plant Science, 2014. 221: p. 1-12.
64.    Digestive stability, m., and uptake by Caco-2 human intestinal cell of chlorophyll derivatives from different preparations of pea (Pisum sativum L.) Gallardo-Guerrero, Lourdes, B. Gandul-Rojas, and M.I. Minguez-Mosquera, Journal of Agricultural and Food Chemistry, 2008. 56(18): p. 8379-8386.
65.    Dissipation behavior of malathion and dimethoate residues from the soil and their uptake by garden pea (Pisum sativum) Getenga, Z.M., et al., Bulletin of Environmental Contamination and Toxicology, 2000. 64(3): p. 359-367.
66.    EFFECT OF AMMONIUM ION ON NITROGENASE ACTIVITY IN NODULE BREIS AND BACTEROIDS FROM PISUM-SATIVUM CULTIVAR TRAPPER Salminen, S.O., Biochimica Et Biophysica Acta, 1981. 658(1): p. 1-9.
67.    Effect of antifungal genes expressed in transgenic pea (Pisum sativum L.) on root colonization with Glomus intraradices Hassan, F., M.S. Noorian, and H.-J. Jacobsen, GM crops & food, 2012. 3(4): p. 301-9.
68.    Effect of Calcium and pH on Copper Binding and Rhizotoxicity to Pea (Pisum sativum L.) Root: Empirical Relationships and Modeling Wu, Y. and W.H. Hendershot, Archives of Environmental Contamination and Toxicology, 2010. 59(1): p. 109-119.
69.    Effect of calcium on RNA content in meristematic cells of pea (Pisum sativum L.) roots treated with toxic in metals LbikNowak, A. and B. Gabara, Folia Histochemica Et Cytobiologica, 1997. 35(4): p. 231-235.
70.    EFFECT OF CHLORAMPHENICOL AND ACTIDIONE ON PISUM-SATIVUM 3RD INTERNODE GROWTH Saus, F.L. and D.F. Blaydes, Proceedings of the West Virginia Academy of Science, 1970. 42: p. 81-83.
71.    Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.) Novak, K., et al., Journal of Experimental Botany, 2002. 53(375): p. 1735-1745.
72.    EFFECT OF FOLIAR APPLICATION OF ANTIBIOTICS AND GIBBERELLIC-ACID ON THE RHIZOSPHERE MICROFLORA OF PEA, I.W.V.-D.R., P. and I. Isaac, Folia Microbiologica, 1980. 25(4): p. 337-340.
73.    Effect of fungicide seed treatments on N-2-fixation and nodulation in pea, P.s.L.A., M. Sajid Aqeel, et al., Bulletin of Environmental Contamination and Toxicology, 2006. 77(6): p. 896-904.
74.    EFFECT OF IAA ON RNA AND PROTEIN SYNTHESIS - EFFECTS OF 3-INDOLYLACETIC ACID ON METABOLISM OF RIBONUCLEIC ACID AND PROTEIN IN ETIOLATED SUBAPICAL SECTIONS OF PISUM SATIVUM Trewavas, A.J., Archives of Biochemistry and Biophysics, 1968. 123(2): p. 324-&.
75.    Effect of methyl jasmonate on growth processes in pea (Pisum sativum L.) Ivanova, A.B., et al., Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections / translated from Russian, 2000. 374: p. 482-4.
76.    Effect of peas (Pisum sativum) in the treatment of experimental non-insulin-dependent diabetes Tormo, M.A., et al., Phytotherapy Research, 1997. 11(1): p. 39-41.
77.    EFFECTS AND ABSORPTION OF SETHOXYDIM ON EXCISED ROOT-TIPS OF CORN (ZEA-MAYS) AND PEA (PISUM-SATIVUM) Takagi, M.K. and H. Hosaka, Zeitschrift Fur Naturforschung C-a Journal of Biosciences, 1993. 48(3-4): p. 288-293.
78.    Effects of bisphenol A on the microtubule arrays in root meristematic cells of Pisum sativum L Adamakis, I.-D.S., et al., Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 2013. 750(1-2): p. 111-120.
79.    Effects of cadmium and copper on antioxidant capacities, l.a.a.d.i.l.o.p.P.s.L.s.C., A. and E. El Ferjani, Comptes Rendus Biologies, 2005. 328(1): p. 23-31.
80.    Effects of cadmium on root apical meristems of Pisum sativum L.: Cell viability, c.p.a.m.p.a.s.m.f.a.o.s.p.F., Anna, C. Gallo, and W. Camusso, Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 2007. 632(1-2): p. 9-19.
81.    Effects of exogenous folic acid on the yield and amino acid content of the seed of Pisum sativum L. and Hordeum vulgare L Stakhova, L.N., L.F. Stakhov, and V.G. Ladygin, Prikladnaya Biokhimiya i Mikrobiologiya, 2000. 36(1): p. 98-103.
82.    Effects of including raw or extruded field peas (Pisum sativum L.) in diets fed to wean ling pigs Stein, H.H., D.N. Peters, and B.G. Kim, Journal of the Science of Food and Agriculture, 2010. 90(9): p. 1429-1436.
83.    EFFECTS OF PLANT HORMONES ON LEUCINE AMINOTRANSFERASE IN PEA (PISUM-SATIVUM) Choudhary, J., S.K. Sopory, and S. Guhamukherjee, Experientia, 1976. 32(12): p. 1517-1518.
84.    Effects of prometryn and trietazine/simazine on weeds and nodulation, n.a., growth and yield of pea (Pisum sativum L.) Singh, Guriqbal and D. Wright, Annals of Biology (Hissar), 2002. 18(1): p. 1-8.
85.    EFFECTS OF PSORALEN ON REPLICON SIZE AND MEAN RATE OF DNA-SYNTHESIS IN PARTIALLY SYNCHRONIZED CELLS OF PISUM-SATIVUM-L Francis, D., et al., Experimental Cell Research, 1985. 158(2): p. 500-508.
86.    Effects of supplemental ultraviolet-B and cadmium on growth, a.a.y.o.P.s.L.A., S. B. and S. Mishra, Ecotoxicology and Environmental Safety, 2009. 72(2): p. 610-618.
87.    Effects of synthetic auxin (2, -.D.o.t.l.o.i.-.-a.a.i.c.a.s.m.o.p.P.s.L.K., A. V., K.K. Sidorova, and V.K. Shumny, Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections / translated from Russian, 2002. 386: p. 460-1.
88.    EFFECTS OF THE SELECTIVE HERBICIDE FLUAZIFOP ON FATTY-ACID SYNTHESIS IN PEA (PISUM-SATIVUM) AND BARLEY (HORDEUM-VULGARE) Walker, K.A., S.M. Ridley, and J.L. Harwood, Biochemical Journal, 1988. 254(3): p. 811-817.
89.    EFFECTS OF TRICHLOROACETIC ACID ON THE EXTENSION GROWTH OF ROOT AND SHOOT SEGMENTS OF PISUM-SATIVUM Sen, G. and E.K. Woodford, Nature, 1953. 171(4360): p. 936-937.
90.    Efficiency of transformation of Polish cultivars of pea (Pisum sativum L.) with various regeneration capacity by using hypervirulent Agrobacterium tumefaciens strains Pniewski, T. and J. Kapusta, Journal of Applied Genetics, 2005. 46(2): p. 139-147.
91.    Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum Mohanty, P., B. Vani, and J.S.S. Prakash, Zeitschrift Fur Naturforschung C-a Journal of Biosciences, 2002. 57(9-10): p. 836-842.
92.    Enhancing phytoremediative ability of Pisum sativum by EDTA application Piechalak, A., B. Tomaszewska, and D. Baralkiewicz, Phytochemistry, 2003. 64(7): p. 1239-1251.
93.    Evaluation of the protection exerted by Pisum sativum Ferredoxin-NADP(H) Reductase against injury induced by hypothermia on Cos-7 cells Pucci Molineris, M., et al., Cryobiology, 2013. 67(1): p. 76-83.
94.    Exposure of Vicia faba and Pisum sativum to copper-induced genotoxicity Souguir, D., et al., Protoplasma, 2008. 233(3-4): p. 203-207.
95.    Expression of a metallothionein A1 gene of Pisum sativum in white poplar enhances tolerance and accumulation of zinc and copper Turchi, A., et al., Plant Science, 2012. 183: p. 50-56.
96.    Expression of PsGRP1, a.n.g.r.p.g.o.P.s., is induced in developing fruit and seed and by ABA in pistil and root Urbez, C., et al., Planta, 2006. 223(6): p. 1292-1302.
97.    Expression of the chloroplast thioredoxins f and m is linked to short-term changes in the sugar and thiol status in leaves of Pisum sativum de Dios Barajas-Lopez, J., et al., Journal of Experimental Botany, 2012. 63(13): p. 4887-900.
98.    Expression of the pea (Pisum sativum L.) alpha-tubulin gene TubA1 is correlated with cell division activity Stotz, H.U. and S.R. Long, Plant Molecular Biology, 1999. 41(5): p. 601-614.
99.    Expression of two HOOKLESS genes in peas (Pisum sativum L.) Du, Q. and H. Kende, Plant and Cell Physiology, 2001. 42(4): p. 374-378.
100.    Feasibility of Pisum sativum as an expression system for pharmaceuticals Mikschofsky, H. and I. Broer, Transgenic Research, 2012. 21(4): p. 715-724.
101.    First report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of biosynthesis or by gibberellic acid treatment ElGhachtouli, N., et al., Febs Letters, 1996. 385(3): p. 189-192.
102.    Functional expression of a cDNA encoding pea (Pisum sativum L.) raffinose synthase, p.p.o.t.e.f.m.s., and steady-state kinetic analysis of raffinose synthesis Peterbauer, T., et al., Planta, 2002. 215(5): p. 839-846.
103.    Functional properties of purified vicilins from cowpea (Vigna unguiculata) and pea (Pisum sativum) and cowpea protein isolate Rangel, A., et al., Journal of Agricultural and Food Chemistry, 2003. 51(19): p. 5792-5797.
104.    FUNGAL MICROFLORA OF SEEDS OF PISUM SATIVUM L AND ITS CONTROL Haware, M.P., Mycopathologia Et Mycologia Applicata, 1971. 43(3-4): p. 343-&.
105.    GENERATION OF CELLULASE ACTIVITY DURING PROTEIN SYNTHESIS BY PEA MICROSOMES IN VITRO Davies, E. and Maclachl.Ga, Archives of Biochemistry and Biophysics, 1969. 129(2): p. 581-&.
106.    Genetic mapping and functional analysis of a nodulation-defective mutant (sym19) of pea (Pisum sativum L.) Schneider, A., et al., Molecular and General Genetics, 1999. 262(1): p. 1-11.
107.    Genotypic variation of the response to cadmium toxicity in Pisum sativum Metwally, A., et al., Journal of Experimental Botany, 2005. 56(409): p. 167-178.
108.    GIBBERELLIC-ACID PROTECTION AGAINST EMS AND MMS INDUCED DAMAGE TO CHROMOSOMES IN PISUM-SATIVUM-L Narsinghani, V.G. and S. Kumar, Cytologia, 1976. 41(2): p. 291-297.
109.    GLUTAMATE-DEHYDROGENASE OF PISUM-SATIVUM - HEAT-DEPENDENT INTERCONVERSION OF THE MULTIPLE FORMS Ehmke, A., H.W. Scheid, and T. Hartmann, Zeitschrift Fur Naturforschung C-a Journal of Biosciences, 1984. 39(3-4): p. 257-260.
110.    Growth stimulation of dwarf peas (Pisum sativum L.) through homeopathic potencies of plant growth substances Baumgartner, S., A. Thurneysen, and P. Heusser, Forschende Komplementarmedizin Und Klassische Naturheilkunde, 2004. 11(5): p. 281-292.
111.    HEAVY-METAL ACTION ON THE DRY MASS CONTENT AND SURFACE-AREA OF NUCLEI AND CYTOPLASM DURING DIFFERENTIATION OF CORTEX CELLS IN PEA (PISUM-SATIVUM-L) ROOTS Romaniuk, J. and B. Gabara, Folia Histochemica Et Cytobiologica, 1988. 26(4): p. 263-273.
112.    HEMAGGLUTINATION AND TRANSFORMATION OF CULTIVATED LYMPHOCYTES - COMPARATIVE STUDY OF PISUM SATIVUM L AND PHASEOLUS VULGARIS L Guillot, J., et al., Comptes Rendus Des Seances De La Societe De Biologie Et De Ses Filiales, 1969. 163(1): p. 152-&.
113.    High irradiance increases NH4+ tolerance in Pisum sativum: Higher carbon and energy availability improve ion balance but not N assimilation Ariz, I., et al., Journal of Plant Physiology, 2011. 168(10): p. 1009-1015.
114.    High irradiance induces photoprotective mechanisms and a positive effect on NH4+ stress in Pisum sativum L Ariz, I., et al., Journal of Plant Physiology, 2010. 167(13): p. 1038-1045.
115.    HPLC determination of chlorophyll and carotenoid pigments in processed green pea cultivars (Pisum sativum L.) Edelenbos, M., L.P. Christensen, and K. Grevsen, Journal of Agricultural and Food Chemistry, 2001. 49(10): p. 4768-4774.
116.    HYDROXYCINNAMOYL - COENZYME-A TRANSFERASE INVOLVED IN BIOSYNTHESIS OF KAEMPFEROL-3-(PARA-COUMAROYL TRIGLUCOSIDE) IN PISUM-SATIVUM Saylor, M.H. and R.L. Mansell, Zeitschrift Fur Naturforschung C-a Journal of Biosciences, 1977. 32(9-10): p. 765-768.
117.    I. Etude electrophoretique. Contribution to the study of the non-specific phyto-agglutinin of Pisum sativum. I. Electrophoretic study Tronchet, J., Bull Soc Hist Nat Doubs, 1961. 63((2)): p. 45-48.
118.    Identification of a novel triterpenoid saponin from Pisum sativum as a specific inhibitor of the diguanylate cyclase of Acetobacter xylinum Ohana, P., et al., Plant and Cell Physiology, 1998. 39(2): p. 144-152.
119.    IDENTIFICATION OF CADAVERINE IN PISUM-SATIVUM Anderson, J.N. and R.O. Martin, Phytochemistry, 1973. 12(2): p. 443-446.
120.    IDENTIFICATION OF THE AUXIN-RESPONSIVE ELEMENT, A., IN THE PRIMARY INDOLEACETIC ACID-INDUCIBLE GENE, PS-IAA4/5, OF PEA (PISUM-SATIVUM) Ballas, N., L.M. Wong, and A. Theologis, Journal of Molecular Biology, 1993. 233(4): p. 580-596.
121.    Impact of dyeing industry effluent on germination and growth of pea (Pisum sativum) Malaviya, P., R. Hali, and N. Sharma, Journal of Environmental Biology, 2012. 33(6): p. 1075-1078.
122.    IN THE HIGHER-PLANT PISUM-SATIVUM MATURATION OF NASCENT DNA IS BLOCKED BY CYCLOHEXIMIDE, B.O.A.-R.A.J.S., J. B. and J. Vanthof, Nucleic Acids Research, 1982. 10(19): p. 6191-6205.
123.    Increased lead accumulation in a single gene mutant of pea (Pisum sativum L.) Chen, J. and J.W. Huang, Bulletin of Environmental Contamination and Toxicology, 2007. 79(1): p. 25-28.
124.    INCREASED LEVELS OF PISATIN AND PHENYLALANINE AMMONIA-LYASE ACTIVITY IN PISUM-SATIVUM TREATED WITH ANTIHISTAMINIC, A., ANTIMALARIAL, TRANQUILIZING, OR OTHER DRUGS Hadwiger, L. A., Biochemical and Biophysical Research Communications, 1972. 46(1): p. 71-&.
125.    Increasing the rate of drying reduces metabolic imbalance, l.p.a.c.w.c.i.r.o.g.p.P.s.L.N., Tobias M., N.W. Pammenter, and P. Berjak, Biological Research, 2013. 46(2): p. 121-130.
126.    INDUCTION KINETICS OF THE NUCLEAR PROTEINS ENCODED BY THE EARLY INDOLEACETIC ACID-INDUCIBLE GENES, P.-I.A.P.-I., IN PEA (PISUM-SATIVUM L) Oeller, P. W. and A. Theologis, Plant Journal, 1995. 7(1): p. 37-48.
127.    INFLUENCE DE LION CALCIUM SUR LA TOXICITE DE LHISTAMINE ET DE COMPOSES APPARENTES, E.S.L.P.D.P.-S.-L.P., R. and G. Deysson, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 1960. 250(14): p. 2770-2772.
128.    INFLUENCE OF AMMONIUM-CHLORIDE ON NITROGENASE ACTIVITY OF NODULATED PEA PLANTS (PISUM-SATIVUM) Houwaard, F., Applied and Environmental Microbiology, 1978. 35(6): p. 1061-1065.
129.    INFLUENCE OF LIGHT, P.A.A.O.T.D.S.O.A.I.R.O.P.-S.K., R., Indian Journal of Biochemistry & Biophysics, 1979. 16(1): p. 14-17.
130.    INFLUENCE OF PEAS (PISUM-SATIVUM) AS A DIETARY INGREDIENT AND FLAVOMYCIN SUPPLEMENTATION ON THE PERFORMANCE AND INTESTINAL MICROFLORA OF BROILER CHICKS Brenes, A., et al., British Poultry Science, 1989. 30(1): p. 81-89.
131.    INFLUENCE OF SAMPLE SIZE UPON RESULT OF AN ANALYSIS OF VARIANCE IN LONG-STEMMED AND SHORT-STEMMED MUTANTS OF PISUM-SATIVUM Weber, E., Zeitschrift Fur Naturforschung C-a Journal of Biosciences, 1976. 31(3-4): p. 216-217.
132.    Inhibiting action of fusicoccin on the ethylene production of Pisum sativum Branca, C. and D. Ricci, Bollettino della Societa italiana di biologia sperimentale, 1983. 59(10): p. 1457-61.
133.    INHIBITION OF 3-PHOSPHOGLYCERATE DEHYDROGENASE FROM PISUM-SATIVUM BY PURINE NUCLEOTIDES Slaughte.Jc, Biochemical Journal, 1973. 135(3): p. 563-565.
134.    Inhibition of Helicobacter pylori by phenolic extracts of sprouted peas (Pisum sativum L.) Ho, C.Y., et al., Journal of Food Biochemistry, 2006. 30(1): p. 21-34.
135.    Interaction of m-xylo-hydroquinone and D-galactose and D-glucose Pisum sativum Sanyal, S.N., S.R. Chowdhury, and S.N. Mukherjee, J Indian Chem Soc, 1964. 41((3)): p. 187-191.
136.    INVITRO EFFECT OF LECTINS FROM PEAS (PISUM-SATIVUM) AND LENTILS (LENS-CULINARIS) ON LIPID-PEROXIDATION AND SUPEROXIDE-DISMUTASE ACTIVITY IN NORMAL AND VITAMIN-B6 DEFICIENT ALBINO-RATS Bansal, A., et al., Indian Journal of Experimental Biology, 1990. 28(1): p. 98-100.
137.    Iron absorption from experimental infant formulas based on pea (Pisum sativum)-protein isolate: the effect of phytic acid and ascorbic acid Davidsson, L., et al., British Journal of Nutrition, 2001. 85(1): p. 59-63.
138.    Isolation and characterization of a lectin with antifungal activity from Egyptian Pisum sativum seeds Sitohy, M., M. Doheim, and H. Badr, Food Chemistry, 2007. 104(3): p. 971-979.
139.    ISOLATION AND CHARACTERIZATION OF PEPTIDE(S) FROM PISUM SATIVUM HAVING ANTIMICROBIAL ACTIVITY AGAINST VARIOUS BACTERIA Rehman, S. and A. Khanum, Pakistan Journal of Botany, 2011. 43(6): p. 2971-2978.
140.    ISOLATION AND CHEMICAL CHARACTERIZATION OF A MITOGENIC LECTIN FROM PISUM-SATIVUM Trowbrid.Is, Journal of Biological Chemistry, 1974. 249(18): p. 6004-6012.
141.    Isolation and identification of an allelopathic substance in Pisum sativum Kato-Noguchi, H., Phytochemistry, 2003. 62(7): p. 1141-1144.
142.    ISOLATION AND PROPERTIES OF CRYSTALLINE ANTI THYROID PHYTO PRECIPITIN FROM PEA SEEDS PISUM-SATIVUM Lutsik, M.D., Biokhimiya, 1974. 39(4): p. 811-815.
143.    ISOLATION OF A PHYTOALEXIN FROM PISUM-SATIVUM L Cruickshank, I.A.M. and D.R. Perrin, Nature, 1960. 187(4739): p. 799-800.
144.    ISOLATION OF A PLANT GROWTH INHIBITORY SUBSTANCE FROM GARDEN PEAS (PISUM SATIVUM L) AND ITS IDENTIFICATION WITH (+)-ABSCISIN-2 Isogai, Y., T. Okamoto, and Y. Komoda, Chemical & Pharmaceutical Bulletin, 1967. 15(8): p. 1256-+.
145.    Isolation of high salinity stress tolerant genes from Pisum sativum by random overexpression in Escherichia coli and their functional validation Joshi, A., et al., Plant signaling & behavior, 2009. 4(5): p. 400-12.
146.    Isolation of pisumin, a.n.a.p.f.l.o.t.s.s.p.P.s.v.m.Y., X. Y. and T.B. Ng, Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2003. 134(2): p. 235-240.
147.    Isolation of the cDNAs encoding (+)6a-hydroxymaackiain 3-O-methyltransferase, t.t.s.f.t.s.o.t.p.p.i.P.s.W., Q. D., C.L. Preisig, and H.D. VanEtten, Plant Molecular Biology, 1997. 35(5): p. 551-560.
148.    KINETIC AND ISOTOPE-EXCHANGE STUDIES ON SHIKIMATE DEHYDROGENASE FROM PISUM-SATIVUM Balinsky, D., A.W. Dennis, and W.W. Cleland, Biochemistry, 1971. 10(10): p. 1947-&.
149.    KINETIC STUDY OF HUMAN LYMPHOCYTES TRANSFORMATION IN CULTURE BY LECTIN FROM PISUM-SATIVUM Bernardgriffiths, I., et al., Pathologie Biologie, 1976. 24(8): p. 517-524.
150.    L.) survival Sousa-Majer, Maria Jose de, R.t.w.d.a.h.t.o.t.p.P.s.L.c.a.s.-s.a.-a.i.a.t.s.e.o.p.w.B.p., et al., Journal of Experimental Botany, 2004. 55(396): p. 497-505.
151.    LECTINS OF SOME POLISH PLANTS .3. INVESTIGATION OF CHEMICAL COMPOSITION Krasiejk.I, Bulletin De L Academie Polonaise Des Sciences-Serie Des Sciences Biologiques, 1967. 15(6): p. 335-&.
152.    LIGHT-INDUCED CHANGES IN IONIC CONTENT OF CHLOROPLASTS IN PISUM SATIVUM Nobel, P.S., Biochimica Et Biophysica Acta, 1969. 172(1): p. 134-&.
153.    LIPASE-INDUCED ALTERATIONS OF FATTY-ACID SYNTHESIS BY SUB-CELLULAR FRACTIONS FROM GERMINATING PEA (PISUM-SATIVUM-L) Sanchez, J., et al., Biochemical Journal, 1982. 204(2): p. 463-470.
154.    Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts Gomez, J.M., et al., Journal of Experimental Botany, 2004. 55(394): p. 119-130.
155.    Long-term impact of sublethal atrazine perturbs the redox homeostasis in pea (Pisum sativum L.) plants Ivanov, S., et al., Protoplasma, 2013. 250(1): p. 95-102.
156.    L-PHENYLALANINE AMMONIA-LYASE AND PISATIN INDUCTION BY 5-BROMODEOXYURIDINE IN PISUM-SATIVUM Sander, C. and L.A. Hadwiger, Biochimica Et Biophysica Acta, 1979. 563(2): p. 278-292.
157.    LYMPHOBLASTIC TRANSFORMATIONS INDUCED BY HEMAGGLUTININS OF PISUM-SATIVUM L. AND ERVUM-LENS L. - INCORPORATION OF TRITIATED THYMIDINE AND ELECTRON MICROSCOPY Coulet, M., et al., Comptes Rendus Des Seances De La Societe De Biologie Et De Ses Filiales, 1970. 164(1): p. 117-&.
158.    Lymphocyte activation and cytokine production by Pisum sativum agglutinin (PSA) in vivo and in vitro Lima, J.E., et al., Immunopharmacology, 1999. 41(2): p. 147-155.
159.    Marked changes in volume of mesophyll protoplasts of pea (Pisum sativium) on exposure to growth hormones Kolla, V.A., D. Suhita, and A.S. Raghavendra, Journal of Plant Physiology, 2004. 161(5): p. 557-562.
160.    Medicinal foodstuffs. XXII. Structures of oleanane-type triterpene oligoglycosides, p.I.a.I., and kaurane-type diterpene oligoglycosides, pisumosides A and B, from green peas, the immature seeds of Pisum sativum L Murakami, T., et al., Chemical & Pharmaceutical Bulletin, 2001. 49(1): p. 73-77.
161.    Medicinal foodstuffs. XXV. Hepatoprotective principle and structures of ionone glucoside, p.g., and flavonol oligoglycosides from young seedpods of garden peas, Pisum sativum L Murakami, T., et al., Chemical & Pharmaceutical Bulletin, 2001. 49(8): p. 1003-1008.
162.    Mitotic index of meristematic cells and root growth of Pisum sativum is affected by inositol cycle modulators Dmitrieva, S.A., F.V. Minibaeva, and L.K. Gordon, Tsitologiia, 2006. 48(6): p. 475-9.
163.    MODIFYING EFFECT OF ANTIBIOTICS AND VITAMINS ON CHROMOSOMAL ABERRATIONS INDUCED BY ETHYL METHANE SULFONATE IN PISUM-SATIVUM-D Narsinghani, V.G. and S. Kumar, Labdev Journal of Science and Technology Part B Life Sciences, 1970. 8(4): p. 248-251.
164.    Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress Rivera-Becerril, F., et al., Mycorrhiza, 2005. 16(1): p. 51-60.
165.    MOLECULAR-CLONING OF ISOFLAVONE REDUCTASE FROM PEA (PISUM-SATIVUM L) - EVIDENCE FOR A 3R-ISOFLAVANONE INTERMEDIATE IN (+)-PISATIN BIOSYNTHESIS Paiva, N.L., et al., Archives of Biochemistry and Biophysics, 1994. 312(2): p. 501-510.
166.    New Synthesis of A-Ring Aromatic Strigolactone Analogues and Their Evaluation as Plant Hormones in Pea (Pisum sativum) Chen, V.X., et al., Chemistry-a European Journal, 2013. 19(15): p. 4849-4857.
167.    Nickel and Ultraviolet-B Stresses Induce Differential Growth and Photosynthetic Responses in Pisum sativum L. Seedlings Srivastava, G., et al., Biological Trace Element Research, 2012. 149(1): p. 86-96.
168.    NICOTINAMIDE ADENINE DINUCLEOTIDE-SPECIFIC GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM PISUM-SATIVUM - ASSAY AND STEADY-STATE KINETICS Duggleby, R.G. and D.T. Dennis, Journal of Biological Chemistry, 1974. 249(1): p. 167-174.
169.    NICOTINAMIDE ADENINE DINUCLEOTIDE-SPECIFIC GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM PISUM-SATIVUM - EFFECT OF NICOTINAMIDE ADENINE-DINUCLEOTIDE AND RELATED COMPOUNDS ON ENZYME-CATALYZED ARSENOLYSIS OF 1, -.D.A.D., R. G. and D.T. Dennis, Journal of Biological Chemistry, 1974. 249(1): p. 175-181.
170.    NICOTINAMIDE ADENINE DINUCLEOTIDE-SPECIFIC GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM PISUM-SATIVUM - PURIFICATION AND CHARACTERIZATION Duggleby, R.G. and D.T. Dennis, Journal of Biological Chemistry, 1974. 249(1): p. 162-166.
171.    Nicotinamide induces defence-related and/or secondary metabolism in plant tissue cultures of Catharanthus roseus and Pisum sativum Berglund, T., et al., Planta Medica, 1993. 59(7 SUPPL.): p. A660-A661.
172.    Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum Srivastava, N., et al., Planta, 2009. 229(4): p. 757-765.
173.    Novel inhibitors of the condensing enzymes of the Type II fatty acid synthase of pea (Pisum sativum) Jones, A.L., et al., Biochemical Journal, 2000. 347: p. 205-209.
174.    Nutritional evaluation of pea (Pisum sativum L.) protein diets after mild hydrothermal treatment and with and without added phytase Urbano, G., et al., Journal of Agricultural and Food Chemistry, 2003. 51(8): p. 2415-2420.
175.    Observations on oral contraceptives from Pisum sativum Linn Sanyal, S.N., Bull Calcutta Sch Trop Med, 1962. 10((2)): p. 85-89.
176.    Osmotic stress- and indole-3-butyric acid-induced NO generation are partially distinct processes in root growth and development in Pisum sativum Kolbert, Z., B. Bartha, and L. Erdei, Physiologia Plantarum, 2008. 133(2): p. 406-416.
177.    Pb2+ exposure induced microsatellite instability in Pisum sativum in a locus related with glutamine metabolism Rodriguez, E., et al., Plant Physiology and Biochemistry, 2013. 62: p. 19-22.
178.    Pea (Pisum sativum L.) protease inhibitors from the Bowman-Birk class influence the growth of human colorectal adenocarcinoma HT29 cells in vitro Clemente, A., et al., Journal of Agricultural and Food Chemistry, 2005. 53(23): p. 8979-8986.
179.    PEA (PISUM SATIVUM) SEED PRODUCTION AS AN ASSAY FOR REPRODUCTIVE EFFECTS DUE TO HERBICIDES Olszyk, D., et al., Environmental Toxicology and Chemistry, 2009. 28(9): p. 1920-1929.
180.    Peas (Pisum sativum L.) Grant, J. and P. Cooper, Agrobacterium Protocols, Second Edition, Vol 1, 2006. 343: p. 337-345.
181.    Peculiarities of the influence of chemical and physical factors on cytogenetic indices of root meristem in Pisum sativum L Rudenko, S.S., et al., TSitologiia i genetika, 2002. 36(3): p. 22-7.
182.    Penicillin production on fractions from the pea (Pisum sativum) Cook, R.P. and M.B. Brown, Biochem Jour, 1946. 40((3)).
183.    Peptides from Pisum sativum L. enzymatic protein digest with anti-adhesive activity against Helicobacter pylori: Structure-activity and inhibitory activity against BabA, S., HpaA and a fibronectin-binding adhesin Niehues, Michael, et al., Molecular Nutrition & Food Research, 2010. 54(12): p. 1851-1861.
184.    Physiological changes in Triticum durum, Z.m., Pisum sativum and Lens esculenta cultivars, caused by irrigation with water contaminated with microcystins: A laboratory experimental approach Saqrane, Sana, et al., Toxicon, 2009. 53(7-8): p. 786-796.
185.    Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil Mukherjee, A., et al., Metallomics, 2014. 6(1): p. 132-138.
186.    PHYTOALEXIN PRODUCTION BY FLOWERS OF GARDEN PEA (PISUM-SATIVUM) Ingham, J.L., Zeitschrift Fur Naturforschung C-a Journal of Biosciences, 1979. 34(3-4): p. 296-298.
187.    PHYTOCHROME-CONTROLLED ENDOMITOSIS DURING PROCESS OF CELL ELONGATION IN EPICOTYL OF PISUM-SATIVUM SEEDLINGS Boeken, G., et al., Archives Internationales De Physiologie De Biochimie Et De Biophysique, 1975. 83(1): p. 169-171.
188.    Phytohemagglutinins from Phaseolus vulgaris L. and Pisum sativum seeds Takhirova, D.S. and T.D. Kasymova, Chemistry of Natural Compounds, 2001. 37(2): p. 185-187.
189.    Pisum sativum (Linn); m-xylohydroquinone as an oral contraceptive; a critical evaluation Sanyal, S.N., Acta endocrinologica. Supplementum, 1956. 23(Suppl 28): p. 72-82.
190.    Pisum sativum (Linn); the effect of m-xylohydroquinone on functional bleeding (human trial) Sanyal, S.N., Acta endocrinologica. Supplementum, 1956. 23(Suppl 28): p. 98-105.
191.    Pisum sativum (Linn); toxicity test of m-xylohydroquinone when used as an oral contraceptive Banerjee, S.C., S.N. Sanyal, and J. Sen, Acta endocrinologica. Supplementum, 1956. 23(Suppl 28): p. 93-7.
192.    PISUM SATIVUM IS A NOVEL BIOINFORMATICS PLATFORM TO STUDY PROANTHOCYANIDIN BIOSYNTHESIS Ferraro, K., et al., Pharmaceutical Biology, 2012. 50(5): p. 584-584.
193.    Pisum sativum wild-type and mutant stipules and those induced by an auxin transport inhibitor demonstrate the entire diversity of laminated stipules observed in angiosperms Kumar, A., et al., Protoplasma, 2013. 250(1): p. 223-234.
194.    PISUM-SATIVUM-D LENS-ESCULENTA Nasemann, T., I.O.P.E.O.G.O.V.A.V.I.O.T.S.A.F.H.-.-J.H.O.P.C.T.P.A.V. and C.G. Schirren, Drug Digests, 1968. 3(4): p. 229-230.
195.    PLANT GROWTH REGULATORS IN PEA PLANT (PISUM-SATIVUM L) Isogai, Y., Y. Komoda, and T. Okamoto, Chemical & Pharmaceutical Bulletin, 1970. 18(9): p. 1872-+.
196.    PLANT NAD-DEPENDENT GLUTAMATE-DEHYDROGENASE - PURIFICATION, M.-P.A.M.-I.A.O.T.E.F.L.-M.A.P.-S.S., H. W., A. Ehmke, and T. Hartmann, Zeitschrift Fur Naturforschung C-a Journal of Biosciences, 1980. 35(3-4): p. 213-221.
197.    Possible roles for His 208 in the active-site region of chloroplast carbonic anhydrase from Pisum sativum Bjorkbacka, H., I.M. Johansson, and C. Forsman, Archives of Biochemistry and Biophysics, 1999. 361(1): p. 17-24.
198.    Preparation of small-sized particles from vicilin (vegetal protein from Pisum sativum L) by coacervation Ezpeleta, I., et al., European Journal of Pharmaceutics and Biopharmaceutics, 1996. 42(1): p. 36-41.
199.    PRESENCE OF PHYTOHEMAGGLUTININS IN VARIOUS ORGANS OF PEA (PISUM-SATIVUM-L) Rouge, P., Annales Pharmaceutiques Francaises, 1977. 35(7-8): p. 287-294.
200.    Pretreatment of Cr(VI)-Amended Soil With Chromate-Reducing Rhizobacteria Decreases Plant Toxicity and Increases the Yield of Pisum sativum Soni, S.K., et al., Archives of Environmental Contamination and Toxicology, 2014. 66(4): p. 616-627.
201.    PRODUCTION OF ANTIBACTERIAL SUBSTANCE BY SEEDS OF PISUM-SATIVUM L. SUBJECTED TO CENTRIFUGATION Burcev, P. and D. Horakova, Folia Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunensis Biologia, 1987(85): p. 67-72.
202.    PRODUCTION OF ANTIFUNGAL COMPOUNDS IN COWPEA (VIGNA-SINENSIS) AND PEA (PISUM-SATIVUM) AFTER VIRUS-INFECTION Bailey, J.A., Journal of General Microbiology, 1973. 75(MAR): p. 119-123.
203.    Production of the active antifungal Pisum sativum defensin 1 (Psd1) in Pichia pastoris: overcoming the inefficiency of the STE13 protease Cabral, K.M.S., et al., Protein Expression and Purification, 2003. 31(1): p. 115-122.
204.    Production of transgenic pea (Pisum sativum L.) plants resistant to the herbicide pursuit Nifantova, S.N., et al., TSitologiia i genetika, 2005. 39(2): p. 16-21.
205.    Protease inhibitor studies and cloning of a serine carboxypeptidase cDNA from germinating seeds of pea (Pisum sativum L) Jones, C.G., G.W. Lycett, and G.A. Tucker, European Journal of Biochemistry, 1996. 235(3): p. 574-578.
206.    Proteomic Analysis of Salicylate-Induced Proteins of Pea (Pisum sativum L.) Leaves Tarchevsky, I.A., V.G. Yakovleva, and A.M. Egorova, Biochemistry-Moscow, 2010. 75(5): p. 590-597.
207.    PURIFICATION AND CHARACTERIZATION OF A THYRO GLOBULIN REACTIVE PHYTO PRECIPITIN FROM PISUM-SATIVUM-D Van Oss, C.J., P.M. Bronson, and S. Kozmycz, Preparative Biochemistry, 1971. 1(2): p. 163-175.
208.    Purification and characterization of novel ribosome inactivating proteins, a.-a.b.-p., from seeds of the garden pea Pisum sativum Lam, S. S. L., H.X. Wang, and T.B. Ng, Biochemical and Biophysical Research Communications, 1998. 253(1): p. 135-142.
209.    PURIFICATION AND COMPARATIVE PROPERTIES OF THE CYTOSOLIC ISOCITRATE DEHYDROGENASES (NADP) FROM PEA (PISUM-SATIVUM) ROOTS AND GREEN LEAVES Chen, R., et al., European Journal of Biochemistry, 1988. 175(3): p. 565-572.
210.    PURIFICATION AND SUBSTRATE AND INHIBITOR SPECIFICITIES OF CARBOXYLESTERASES OF PEA (PISUM SATIVUM L.) Montgome.Mw, M.J. Norgaard, and Veerabha.Ps, Biochimica Et Biophysica Acta, 1968. 167(3): p. 567-&.
211.    Purification of native dehydrin from Glycine Max cv., P.s., and Rosmarinum officinalis by affinity chromatography Herzer, S., et al., Protein Expression and Purification, 2003. 28(2): p. 232-240.
212.    Pyrabactin, a.A.a., induced stomatal closure and changes in signalling components of guard cells in abaxial epidermis of Pisum sativum Puli, Mallikarjuna Rao and A.S. Raghavendra, Journal of Experimental Botany, 2012. 63(3): p. 1349-1356.
213.    quinone, C.a.a.c.a.q.-d.i.o.a.o.f.p.s.P.s.a.A.g.e.f.b.c.c.a.c.d.o.t., et al., Journal of Biological Inorganic Chemistry, 2004. 9(3): p. 256-268.
214.    Radioprotective effect of novel disubstituted thioureas on pea (Pisum sativum L.) development Mehandjiev, A., et al., Radiatsionnaia biologiia, radioecologiia / Rossiiskaia akademiia nauk, 2002. 42(6): p. 644-53.
215.    RAPID BACKGROUND REDUCTION OF CIRCULATING SODIUM IODIDE-I 125-LABELED PISUM-SATIVUM AGGLUTININ USED AS A TUMOR-IMAGING RADIOPHARMACEUTICAL BY THE CHEMICALLY GALACTOSYLATED ANTIBODY Kojima, S., et al., European Journal of Nuclear Medicine, 1990. 16(11): p. 781-786.
216.    RAPIDLY LABELED RNA IN LEAVES .2. CHARACTERIZATION OF RAPIDLY LABELED RNA Wollgieh.R and M. Ruess, Zeitschrift Fur Naturforschung Part B-Chemie Biochemie Biophysik Biologie Und Verwandten Gebiete, 1968. B 23(9): p. 1198-&.
217.    Recovery of development and functionality of nodules and plant growth in salt-stressed Pisum sativum - Rhizobium leguminosarum symbiosis by boron and calcium Bolanos, L., A. El-Hamdaoui, and I. Bonilla, Journal of Plant Physiology, 2003. 160(12): p. 1493-1497.
218.    RELATIONSHIP BETWEEN RED BLOOD CELL AGGLUTINATION AND POLYSACCHARIDE PRECIPITATION BY PHYTOHEMOGGLUTININ OF PISUM-SATIVUM L Paulova, M., et al., Febs Letters, 1970. 9(6): p. 345-&.
219.    Relationships of root conductivity and aquaporin gene expression in Pisum sativum: diurnal patterns and the response to HgCl2 and ABA Beaudette, P.C., et al., Journal of Experimental Botany, 2007. 58(6): p. 1291-1300.
220.    Replicon size and the dynamics of DNA replication during staurosporine- and vanadate-stimulated endo-S phases in primary roots of Pisum sativum Rosiak, M. and J. Maszewski, Folia Histochemica Et Cytobiologica, 2003. 41(3): p. 169-175.
221.    Requirement for either a host- or pectin-induced pectate lyase for infection of Pisum sativum by Nectria hematococca Rogers, L.M., et al., Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(17): p. 9813-9818.
222.    Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds Smrkolj, P., et al., Journal of Experimental Botany, 2006. 57(14): p. 3595-3600.
223.    Response of mitochondrial thioredoxin PsTrxo1, a.e., and respiration to salinity in pea (Pisum sativum L.) leaves Marti, Maria C., et al., Journal of Experimental Botany, 2011. 62(11): p. 3863-3874.
224.    Response of Pisum sativum (Fabales: Fabaceae) to Sitona lineatus (Coleoptera: Curculionidae) Infestation: Effect of Adult Weevil Density on Damage, L.P., and Yield Loss Vankosky, M. A., H.A. Carcamo, and L.M. Dosdall, Journal of Economic Entomology, 2011. 104(5): p. 1550-1560.
225.    Response of ultraviolet-B and nickel on pigments, m.a.a.o.P.s.L.S., Suruchi, et al., Journal of Environmental Biology, 2009. 30(5): p. 677-684.
226.    Responses of Pisum sativum L. to Exogenous Indole Acetic Acid Application Under Manganese Toxicity Gangwar, S., V.P. Singh, and J.N. Maurya, Bulletin of Environmental Contamination and Toxicology, 2011. 86(6): p. 605-609.
227.    Review of the health benefits of peas (Pisum sativum L.) Dahl, W.J., L.M. Foster, and R.T. Tyler, British Journal of Nutrition, 2012. 108: p. S3-S10.
228.    ROLE OF DIVALENT-CATIONS IN ACTIVATION OF NADP+-SPECIFIC ISOCITRATE DEHYDROGENASE FROM PISUM-SATIVUM-L Maloney, R.J. and D.T. Dennis, Canadian Journal of Biochemistry, 1977. 55(9): p. 928-934.
229.    ROLE OF ENDOGENOUS HISTAMINE IN GERMINATION OF PISUM-SATIVUM Gonzalez.M and A. Fraile, Revista Espanola De Fisiologia, 1973. 29(2): p. 115-119.
230.    Root colonization of faba bean (Vicia faba L.) and pea (Pisum sativum L.) by Rhizobium leguminosarum bv. viciae in the presence of nitrate-nitrogen Beauchamp, C.J., et al., Canadian Journal of Microbiology, 2001. 47(12): p. 1068-1074.
231.    Root response in Pisum sativum and Zea mays under fluoranthene stress: Morphological and anatomical traits Kummerova, M., et al., Chemosphere, 2013. 90(2): p. 665-673.
232.    ROS resistance in Pisum sativum cv. Alaska: the involvement of nucleoside diphosphate kinase in oxidative stress responses via the regulation of antioxidants Haque, M.E., Y. Yoshida, and K. Hasunuma, Planta, 2010. 232(2): p. 367-382.
233.    Sativin - A novel antifungal miraculin-like protein isolated from legumes of the sugar snap Pisum sativum var. macrocarpon Ye, X.Y., H.X. Wang, and T.B. Ng, Life Sciences, 2000. 67(7): p. 775-781.
234.    SCREENING AZADIRACHTA-INDICA AND PISUM-SATIVUM FOR POSSIBLE ANTIMALARIAL ACTIVITIES Abatan, M.O. and M.J. Makinde, Journal of Ethnopharmacology, 1986. 17(1): p. 85-93.
235.    Short term physiological implications of NBPT application on the N metabolism of Pisum sativum and Spinacea oleracea Cruchaga, S., et al., Journal of Plant Physiology, 2011. 168(4): p. 329-336.
236.    Six genes strongly regulated by mercury in Pisum sativum roots Savenstrand, H. and A. Strid, Plant Physiology and Biochemistry, 2004. 42(2): p. 135-142.
237.    S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress Ortega-Galisteo, A.P., et al., Journal of Experimental Botany, 2012. 63(5): p. 2089-2103.
238.    Solation and characterization of peptide(s) from Pisum sativum having antimicrobial activity against various bacteria Saima, R. and K. Azra, Pakistan Journal of Botany, 2011. 43(6): p. 2971-2978.
239.    Solubilization, p.p., and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum Schneider-Belhaddad, F. and P. Kolattukudy, Archives of Biochemistry and Biophysics, 2000. 377(2): p. 341-349.
240.    Solution structure of Pisum sativum defensin 1 by high resolution NMR: Plant defensins, i.b.w.d.m.o.a.A., M. S., et al., Journal of Molecular Biology, 2002. 315(4): p. 749-757.
241.    SOLVENT HYDROGEN ISOTOPE EFFECTS AND ANION INHIBITION OF CO2 HYDRATION CATALYZED BY CARBONIC-ANHYDRASE FROM PISUM-SATIVUM Johansson, I.M. and C. Forsman, European Journal of Biochemistry, 1994. 224(3): p. 901-907.
242.    Some properties of spectrin-like proteins from Pisum sativum Bisikirska, B. and A.F. Sikorski, Zeitschrift Fur Naturforschung C-a Journal of Biosciences, 1997. 52(3-4): p. 180-186.
243.    SPECIFIC INHIBITION OF ALKANE SYNTHESIS WITH ACCUMULATION OF VERY LONG-CHAIN COMPOUNDS BY DITHIOERYTHRITOL, D., AND MERCAPTOETHANOL IN PISUM-SATIVUM Buckner, J. S. and Kolattuk.Pe, Archives of Biochemistry and Biophysics, 1973. 156(1): p. 34-45.
244.    Squ-alene in Pisum sativum. Its cyclization to beta -amyrin and labeling pat-tern Capstack, E., et al., J Biol Chem, 1965. 230((8)): p. 3258-3263.
245.    STEREOISOMERISM IN PLANT-DISEASE RESISTANCE - INDUCTION AND ISOLATION OF THE 7, -.D.-., 5'-METHYLENEDIOXYISOFLAVONE OXIDOREDUCTASE, AN ENZYME INTRODUCING CHIRALITY DURING SYNTHESIS OF ISOFLAVONOID PHYTOALEXINS IN PEA (PISUM-SATIVUM L) Sun, Y. J., et al., Archives of Biochemistry and Biophysics, 1991. 284(1): p. 167-173.
246.    STIMULATION OF NODULATION IN FIELD PEAS (PISUM-SATIVUM) BY LOW CONCENTRATIONS OF AMMONIUM IN HYDROPONIC CULTURE Waterer, J.G., J.K. Vessey, and C.D. Raper, Physiologia Plantarum, 1992. 86(2): p. 215-220.
247.    STIMULATION OF PISATIN PRODUCTION IN PISUM SATIVUM BY ACTINOMYCIN D AND OTHER COMPOUNDS Schwocha.Me and L.A. Hadwiger, Archives of Biochemistry and Biophysics, 1968. 126(2): p. 731-&.
248.    STRUCTURAL CHARACTERIZATION OF THE EARLY INDOLEACETIC ACID-INDUCIBLE GENES, P.-I.A.P.-I., OF PEA (PISUM-SATIVUM L) Oeller, P. W., et al., Journal of Molecular Biology, 1993. 233(4): p. 789-798.
249.    Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum) Pandey, N. and G.K. Singh, Journal of Environmental Biology, 2012. 33(2): p. 201-206.
250.    STUDIES ON CONTROL OF MITOTIC ACTIVITY - EFFECT OF RESPIRATORY INHIBITORS ON MITOTIC CYCLE TIME IN ROOT MERISTEM OF PISUM SATIVUM Vanthof, J. and G.B. Wilson, Chromosoma, 1962. 13(1): p. 39-&.
251.    STUDIES ON PHYTOHEMAGGLUTININS .3. ISOLATION AND CHARACTERIZATION OF HEMAGGLUTININS FROM PEA (PISUM-SATIVUM L) Entliche.G, J.V. Kostir, and J. Kocourek, Biochimica Et Biophysica Acta, 1970. 221(2): p. 272-&.
252.    STUDIES ON PHYTOHEMAGGLUTINIS .7. EFFECT OF MN2+ AND CA2+ ON HEMAGGLUTINATION AND POLYSACCHARIDE PRECIPITATION BY PHYTOHEMAGGLUTININ OF PISUM-SATIVUM L Paulova, M., et al., Biochimica Et Biophysica Acta, 1971. 237(3): p. 513-&.
253.    Study of the pea pod (Pisum sativum L.) as a possible first material for obtaining prebiotic ingredients Mateos-Aparicio, I., et al., Alimentaria, 2006(374): p. 114-115.
254.    SYMBIOTIC DINITROGEN FIXATION AS AFFECTED BY SHORT-TERM APPLICATION OF NITRATE TO NODULATED PISUM-SATIVUM-L Skrdleta, V., et al., Folia Microbiologica, 1980. 25(2): p. 155-161.
255.    Ten years of research on an oral contraceptive from Pisum sativum Linn Sanyal, S.N., Sci and Culture, 1960. 25((12)): p. 661-665.
256.    The anti-proliferative effect of TI1B, a.m.B.-B.i.f.p.P.s.L., on HT29 colon cancer cells is mediated through protease inhibition Clemente, Alfonso, et al., British Journal of Nutrition, 2012. 108: p. S135-S144.
257.    THE EFFECT OF AFLATOXINS ON THE ELECTRON-TRANSPORT CHAIN OF CHLOROPLASTS FROM ZEA-MAYS L AND PISUM-SATIVUM L Penavaldivia, C.B. and E.T. Vazquez, Food Additives and Contaminants, 1995. 12(3): p. 451-460.
258.    THE EFFECT OF THIOLACTOMYCIN ANALOGS ON FATTY-ACID SYNTHESIS IN PEAS (PISUM-SATIVUM CV ONWARD) Jones, A.L., J.E. Dancer, and J.L. Harwood, Biochemical Society Transactions, 1994. 22(3): p. S258-S258.
259.    THE EFFECT OF THIOLACTOMYCIN ON FATTY-ACID SYNTHESIS IN PEAS (PISUM-SATIVUM, C.O.J., A. L., J.E. Dancer, and J.L. Harwood, Biochemical Society Transactions, 1994. 22(2): p. S202-S202.
260.    THE EFFECT OF WATERLOGGING ON THE SYNTHESIS OF THE NITROGENASE COMPONENTS IN BACTEROIDS OF RHIZOBIUM-LEGUMINOSARUM IN ROOT-NODULES OF PISUM-SATIVUM Bisseling, T., W. Vanstaveren, and A. Vankammen, Biochemical and Biophysical Research Communications, 1980. 93(3): p. 687-693.
261.    The fatal effect of tungsten on Pisum sativum L. root cells: indications for endoplasmic reticulum stress-induced programmed cell death Adamakis, I.-D.S., E. Panteris, and E.P. Eleftheriou, Planta, 2011. 234(1): p. 21-34.
262.    THE INFLUENCE OF ANTIBIOTICS AND ANTITUMOR AGENTS ON THE RELAX ACTIVITY OF PISUM-SATIVUM LEAF CHLOROPLAST TOPOISOMERASE I Sitailo, L.A., Molekulyarnaya Biologiya (Moscow), 1991. 25(3): p. 633-641.
263.    THE INFLUENCE OF ANTIBIOTICS AND ANTITUMOR AGENTS ON THE RELAX ACTIVITY OF PISUM-SATIVUM LEAF CHLOROPLAST TOPOISOMERASE I Sitailo, L.A., Molekulyarnaya Biologiya (Moscow), 1991. 25(3): p. 633-641.
264.    THE INFLUENCE OF ANTIBIOTICS AND ANTITUMOR AGENTS ON THE RELAXATION ACTIVITY OF PISUM-SATIVUM LEAF CHLOROPLAST TOPOISOMERASE-I Zagariya, A.M. and L.A. Sitailo, Archives of Biochemistry and Biophysics, 1995. 320(1): p. 177-181.
265.    The influence of dietary field peas (Pisum sativum L.) on pig performance, c.q., and the palatability of pork Stein, H. H., et al., Journal of Animal Science, 2006. 84(11): p. 3110-3117.
266.    The involvement of indole-3-acetic acid in the control of stem elongation in dark- and tight-grown pea (Pisum sativum) seedlings Sorce, C., et al., Journal of Plant Physiology, 2008. 165(5): p. 482-489.
267.    The pericarp of Pisum sativum L.(Fabaceae) as a biologically active waste product Taha, K.F., et al., Planta Medica, 2011. 77(12): p. 1367-1368.
268.    The physiological implications of urease inhibitors on N metabolism during germination of Pisum sativum and Spinacea oleracea seeds Ariz, I., et al., Journal of Plant Physiology, 2012. 169(7): p. 673-681.
269.    THE PRODUCTION OF PENICILLIN USING FRACTIONS OBTAINED FROM AQUEOUS EXTRACTS OF PEA (PISUM-SATIVUM) Cook, R.P., et al., Biochemical Journal, 1945. 39(4): p. 314-317.
270.    The requirements for Ca2+, p.p., and dephosphorylation for ethylene signal transduction in Pisum sativum L Kwak, S. H. and S.H. Lee, Plant and Cell Physiology, 1997. 38(10): p. 1142-1149.
271.    The sulfhydryl groups of Cys 269 and Cys 272 are critical for the oligomeric state of chloroplast carbonic anhydrase from Pisum sativum Bjorkbacka, H., et al., Biochemistry, 1997. 36(14): p. 4287-4294.
272.    The use of plant tissue cultures in vitro for the study of enzyme systems. II. Action of different quinones on peroxidase liberation and root morphology in Pisum sativum Ciasca, M. and M.A. Luchetti, Annali dell'Istituto superiore di sanita, 1965. 1(9): p. 533-9.
273.    THERMODYNAMICS OF MONOSACCHARIDE BINDING TO CONCANAVALIN-A, P.P.-S.L., AND LENTIL (LENS-CULINARIS) LECTIN Schwarz, F. P., et al., Journal of Biological Chemistry, 1993. 268(11): p. 7668-7677.
274.    THERMOLUMINESCENCE INVESTIGATION OF PHOTOINHIBITION IN THE GREEN-ALGA, C.-S.A.I.P.-S.L.L.J., T., et al., Zeitschrift Fur Naturforschung C-a Journal of Biosciences, 1992. 47(7-8): p. 585-590.
275.    Three classes of proteinase inhibitor gene have distinct but overlapping patterns of expression in Pisum sativum plants Domoney, C., et al., Plant Molecular Biology, 2002. 48(3): p. 319-329.
276.    TRANSCRIPTIONAL REGULATION OF PS-IAA4/5 AND PS-IAA6 EARLY GENE-EXPRESSION BY INDOLEACETIC-ACID AND PROTEIN-SYNTHESIS INHIBITORS IN PEA (PISUM-SATIVUM) Koshiba, T., et al., Journal of Molecular Biology, 1995. 253(3): p. 396-413.
277.    Transient protein expression in three Pisum sativum (green pea) varieties Green, B.J., et al., Biotechnology Journal, 2009. 4(2): p. 230-237.
278.    Tungsten affects the cortical microtubules of Pisum sativum root cells: experiments on tungsten-molybdenum antagonism Adamakis, I.D.S., E. Panteris, and E.P. Eleftheriou, Plant Biology, 2010. 12(1): p. 114-124.
279.    UDP-GLUCOSE - GLUCOSYLTRANSFERASE ACTIVITY INVOLVED IN THE BIOSYNTHESIS OF FLAVONOL TRIGLUCOSIDES IN PISUM-SATIVUM-L SEEDLINGS Shute, J.L., P.S. Jourdan, and R.L. Mansell, Zeitschrift Fur Naturforschung C-a Journal of Biosciences, 1979. 34(9-10): p. 738-741.
280.    Ultraviolet-B induced changes in morphological, p.a.b.p.o.t.c.o.p.P.s.L.C., Krishna Kumar and S.B. Agrawal, Ecotoxicology and Environmental Safety, 2014. 100: p. 178-187.
281.    Use of X-ray absorption spectroscopy and biochemical techniques to characterize arsenic uptake and reduction in pea (Pisum sativum) plants Castillo-Michel, H., et al., Plant Physiology and Biochemistry, 2007. 45(6-7): p. 457-463.
282.    Valorization of biocide molecules within the pea seed (Pisum sativum L.) industrial residues Cuartero Diaz, G., E. Haubruge, and F. Francis, Communications in agricultural and applied biological sciences, 2006. 71(2 Pt A): p. 115-20.
283.    Valorization of the Peel of Pea: Pisum sativum by Evaluation of Its Antioxidant and Antimicrobial Activities Hadrich, F., et al., Journal of Oleo Science, 2014. 63(11): p. 1177-1183.

No comments:

Labels

Abelmoschus esculentus Abelmoschus ficulneus Abies pindrow Abies spectabilis Abies webbiana Abroma augusta Abrus precatorius Abutilon hirtum Abutilon indicum Acacia catechu Acacia farnesiana Acacia horrida Acacia nilotica Acalypha wilkesiana Acer acuminatum Acer cappadocicum Achillea millefolium Achyranthes aspera Acmella oleracea Aconitum heterophyllum Adhatoda vasica Aegle marmelos Aerva javanica Aeschynomene americana Aesculus indica Ageratum conyzoides Alangium salviifolium Albizia saman Alcea rosea Aleurites moluccana Aleurites triloba Allium cepa Alocasia fornicata Alocasia indica Alocasia macrorrhizos Aloe vera Alpinia calcarata Alpinia galanga Alpinia officinarum Alstonia scholaris Alternative and Complementary Medicine Journals Amaranthus caudatus Amaranthus graecizans Amaranthus viridis Ammannia baccifera Ammi majus Amomum subulatum Amorphophallus paeoniifolius Anacyclus pyrethrum Anagallis arvensis Andrographis echioides Andrographis ovata Andrographis paniculata Anemone coronaria Anemone rivularis Anemone tetrasepala Annona muricata Anthocephalus cadamba Anthurium andraeanum Apium leptophyllum Apluda mutica Arabidopsis thaliana Arachis hypogaea Argemone mexicana Arisaema tortuosum Aristolochia littoralis Artabotrys hexapetalus Artemisia japonica Artemisia nilagirica Artocarpus heterophyllus Arundinella setosa Arundo donax Aspidopterys wallichii Aster albescens Astragalus leucocephalus Asystasia gangetica Avena sativa Averrhoa carambola Azadirachta indica Bacopa monnieri Bambusa Bambos Bambusa multiplex Bambusa vulgaris Barleria cristata Barleria prionitis Basilicum polystachyon Bauhinia purpurea Bauhinia racemosa Bauhinia scandens Bauhinia vahlii Bauhinia variegata Benincasa hispida Bidens pilosa Biophytum sensitivum Bixa orellana Blepharis integrifolia Blepharis maderaspatensis Blumea lacera Boerhavia diffusa Bombax ceiba Borassus flabellifer Boswellia ovalifoliolata Boswellia serrata Brassica rapa Buchnera hispida Butea monosperma Caesalpinia bonduc Caesalpinia pulcherrima Cajanus cajan Cajanus scarabaeoides Caladium bicolor Caleana major Calendula officinalis Calophyllum brasiliense Calophyllum inophyllum Calotropis gigantea Calotropis procera Camellia sinensis Campanula latifolia Cananga odorata Canscora diffusa Capparis sepiaria Capparis zeylanica Capsella bursa-pastoris Cardamine hirsuta Cardiocrinum giganteum Cardiospermum halicacabum Carduus edelbergii Carrichtera annua Carthamus oxyacantha Carthamus tinctorius Carum carvi Cassia angustifolia Cassia auriculata Cassia fistula Cassia occidentalis Catesbaea spinosa Catharanthus roseus Cayratia trifolia Cedrela toona Ceiba insignis Ceiba pentandra Celastrus paniculatus Celosia argentea Centaurium erythraea Centella asiatica Cestrum diurnum Chaerophyllum reflexum Chamaesyce hypericifolia Chenopodium album Chenopodium ambrosioides Chenopodium murale Chrozophora rottleri Cicer arietinum Cichorium glandulosum Cichorium pumilum Cinnamomum camphora Cinnamomum tamala Cinnamomum verum Circaea alpina Cissampelos pareira Cissus quadrangularis Citrullus lanatus Cleistanthus patulus Clematis gouriana Clematis montana Cleome gynandra Clerodendrum chinense Clerodendrum indicum Clerodendrum infortunatum Clerodendrum laevifolium Clerodendrum philippinum Clerodendrum phlomidis Clerodendrum serratum Clerodendrum splendens Clerodendrum wallichii Coccinia grandis Cocculus hirsutus Cocculus laurifolius Cochlospermum religiosum Coix lacryma-jobi Colebrookea oppositifolia Coleus aromaticus Colocasia esculenta Combretum indicum Commelina benghalensis Commelina maculata Commelina paludosa Commiphora caudata Commiphora mukul Commiphora wightii Conocarpus lancifolius Consolida ajacis Convolvulus pluricaulis Cordyline fruticosa Corydalis cornuta Cosmos sulphureus Costus speciosus Cotinus coggygria Couroupita guianensis Crinum asiaticum Crocus sativus Crossandra infundibuliformis Crotalaria alata Crotalaria pallida Crotalaria prostrata Croton klotzschianus Croton scabiosus Croton tiglium Cryptolepis buchananii Cryptolepis dubia Cryptostegia grandiflora Cucumis sativus Cuminum cyminum Cupressus torulosa Curculigo orchioides Curcuma amada Curcuma longa Cuscuta reflexa Cyananthus lobatus Cyanthillium cinereum Cycas revoluta Cyclanthera pedata Cymbopogon nardus Cynodon dactylon Cyperus laevigatus Cyperus malaccensis Cyperus rotundus Dactyloctenium aegyptium Dactylorhiza hatagirea Dalbergia latifolia Datisca cannabina Datura metel Datura stramonium Daucus carota Delphinium ajacis Delphinium denudatum Delphinium elatum Dendrobium densiflorum Dendrobium ovatum Derris scandens Derris trifoliata Desmodium concinnum Desmodium gangeticum Desmodium heterocarpon Desmodium multiflorum Desmodium triflorum Dichrocephala integrifolia Dicliptera paniculata Didymocarpus pedicellatus Dillenia indica Dimorphocalyx glabellus Dimorphoteca ecklonis Dioscorea alata Dioscorea pentaphylla Dioscorea polygonoides Diospyros kaki Diospyros malabarica Dipteracanthus patulus Dipteracanthus prostratus Dolichandrone spathacea Dolichos biflorus Dregea volubilis Drimia indica Drosera peltata Duranta erecta Dysoxylum binectariferum Dysoxylum gotadhora Dysphania ambrosioides Echinocereus pentalophus Echinops niveus Echium plantagineum Edgeworthia gardneri Eichhornia crassipes Elaeagnus umbellata Elaeocarpus ganitrus Elephantopus scaber Eleutheranthera ruderalis Elsholtzia fruticosa Elytraria acaulis Embelia ribes Emblica officinalis Enterolobium cyclocarpum Ephedra foliata Ephedra gerardiana Epipactis helleborine Eranthemum pulchellum Eryngium foetidum Erysimum hieraciifolium Erythrina suberosa Erythrina variegata Euonymus echinatus Euonymus japonicus Eupatorium capillifolium Eupatorium perfoliatum Euphorbia antiquorum Euphorbia cornigera Euphorbia cotinifolia Euphorbia granulata Euphorbia heterophylla Euphorbia hirta Euphorbia hypericifolia Euphorbia milii Euphorbia nivulia Euphorbia peplus Euphorbia tirucalli Fagonia cretica Fagopyrum acutatum Ferula foetida Ficus elastica Ficus religiosa Filicium decipiens Filipendula vestita Flacourtia indica Flemingia procumbens Flemingia semialata Foeniculum vulgare Free Access Journal Fumaria indica Fumaria parviflora Furcraea foetida Galega officinalis General Gentiana kurroo Geranium lucidum Geranium nepalense Geranium pratense Geranium wallichianum Ghee Globba schomburgkii Glochidion hohenackeri Gloriosa superba Glycyrrhiza glabra Gmelina arborea Gomphrena globosa Gomphrena serrata Goodyera repens Grewia asiatica Grewia optiva Grewia serrulata Grewia tenax Gymnema sylvestre Habenaria edgeworthii Habenaria plantaginea Handroanthus impetiginosus Hedychium spicatum Helianthus annuus Helicteres isora Helinus lanceolatus Heliotropium indicum Hemidesmus indicus Hemigraphis alternata Hemigraphis colorata Hemigraphis hirta Heracleum sphondylium Herpetospermum pedunculosum Hibiscus cannabinus Hibiscus esculentus Hibiscus hirtus Hibiscus lobatus Hibiscus radiatus Hibiscus vitifolius Hippophae rhamnoides Holarrhena antidysenterica Holarrhena pubescens Holoptelea integrifolia Hosta plantaginea Hoya carnosa Hydrocotyle sibthorpioides Hydrolea zeylanica Hygrophila auriculata Hygrophila polysperma Hygrophila schulli Hylocereus undatus Hymenocallis speciosa Hymenodictyon orixense Hyoscyamus niger Hypericum dyeri Hypericum elodeoides Hypericum oblongifolium Hyptis suaveolens Ilex dipyrena Impatiens balsamina Impatiens bracteata Impatiens racemosa Indigofera aspalathoides Indigofera astragalina Indigofera glabra Ipomoea alba Ipomoea aquatica Ipomoea marginata Isodon rugosus Ixeris polycephala Jacaranda mimosifolia Jacquemontia pentantha Jasminum auriculatum Jasminum multiflorum Jatropha curcas Jatropha gossypifolia Juncus thomsonii Justicia adhatoda Justicia brandegeeana Justicia carnea Justicia gendarussa Justicia pubigera Kalanchoe blossfeldiana Kallstroemia pubescens Koelreuteria elegans Koelreuteria paniculata Koenigia delicatula Kopsia fruticosa Kydia calycina Kyllinga brevifolia Lablab purpureus Lactuca dissecta Lantana camara Lathyrus sativus Leea aequata Lens culinaris Leonotis nepetifolia Leonurus cardiaca Lepidium sativum Lepisanthes rubiginosa Leucas aspera Leucas nutans Leucostemma latifolium Leycesteria formosa Ligularia amplexicaulis Ligularia fischeri Lilium polyphyllum Linum usitatissimum Liparis nervosa Liquidambar formosana Litsea monopetala Lupinus angustifolius Lycium ferocissimum Macaranga peltata Maesa argentea Magnolia champaca Mahonia napaulensis Malachra Capitata Mallotus nudiflorus Mallotus philippinensis Malva sylvestris Malvastrum coromandelianum Marchantia polymorpha Martynia annua Medicago lupulina Medicinal Plants of India Melilotus indicus Melochia corchorifolia Memecylon edule Memecylon umbellatum Mercurialis annua Meriandra strobilifera Merremia cissoides Mesua ferrea Micrococca mercuriali Micromeria biflora Mikania micrantha Millettia pinnata Mimosa polyancistra Mimosa pudica Mitragyna parvifolia Modiola caroliniana Momordica charantia Momordica cochinchinensis Morinda citrifolia Morinda pubescens Moringa oleifera Mucuna pruriens Muehlenbeckia platyclada Muehlenbeckia platyclados Muntingia calabura Murdannia nudiflora Murraya koenigii Muscari neglectum Myriactis nepalensis Myristica fragrans Myrtus communis Naravelia zeylanica Nardostachys grandiflora Nardostachys jatamansi Naringi crenulata Nasturtium officinale Nelumbo nucifera Neolamarckia cadamba Nepeta laevigata Nerium indicum Nerium oleander Nicotiana plumbaginifolia Nicotiana rustica Nicotiana tabacum Nigella sativa Nyctanthes arbor-tristis Nymphaea nouchali Nymphaea pubescens Nymphoides indica Ocimum basilicum Ocimum gratissimum Ocimum kilimandscharicum Ocimum sanctum Oldenlandia umbellata Ononis natrix Ononis repens Ononis spinosa Operculina turpethum Origanum majorana Oroxylum indicum Osteospermum ecklonis Others Oxyria digyna Pachygone ovata Pachyrhizus erosus Paederia foetida Pandanus tectorius Papaver somniferum Passiflora caerulea Passiflora vitifolia Pavetta indica Pentapetes phoenicea Pentas lanceolata Peperomia argyreia Peperomia heyneana Peperomia pellucida Peperomia sandersii Peperomia tetraphylla Perilla frutescens Persicaria amplexicaulis Persicaria barbata Persicaria capitata Persicaria glabra Persicaria nepalensis Phalaenopsis taenialis Phaulopsis dorsiflora Philodendron bipinnatifidum Phlomis bracteosa Phlomoides bracteosa Phyllanthus acidus Phyllanthus amarus Phyllanthus fraternus Phyllanthus lawii Phyllanthus rotundifolius Physalis grisea Physalis peruviana Picrorhiza kurroa Pilea microphylla Pimpinella anisum Piper betle Piper longum Piper nigrum Pisonia aculeata Pistia stratiotes Pisum sativum Plantago orbignyana Plantago ovata Platanthera edgeworthii Platostoma elongatum Plectranthus barbatus Plectranthus scutellarioides Plumbago auriculata Plumbago capensis Plumbago zeylanica Plumeria rubra Podranea ricasoliana Polemonium caeruleum Polygala crotalarioides Polygala persicariifolia Polygonatum cirrhifolium Polygonatum verticillatum Polygonum amplexicaule Polygonum barbatum Polygonum recumbens Pongamia pinnata Portulaca oleracea Portulaca umbraticola Portulacaria afra Potentilla fruticosa Potentilla supina Premna corymbosa Premna tomentosa Primula denticulata Primula floribunda Primula vulgaris Prunus Amygdalus Prunus dulcis Pseuderanthemum carruthersii Pseudobombax ellipticum Pseudocaryopteris foetida Psidium guajava Psidium guineense Pterocarpus santalinus Pterospermum acerifolium Pterospermum lanceifolium Pterygota alata Pulicaria dysenterica Punica granatum Putranjiva roxburghii Pyrostegia venusta Quisqualis indica Ranunculus arvensis Ranunculus laetus Ranunculus sceleratus Raphanus sativus Rauvolfia serpentina Rauvolfia tetraphylla Reinwardtia indica Rhamphicarpa fistulosa Rhodiola trifida Rhodiola wallichiana Rhododendron arboreum Rhynchosia heynei Rhynchosia himalensis Rhynchosia viscosa Ricinus communis Rorippa indica Roscoea purpurea Rosmarinus officinalis Ruellia patula Ruellia prostrata Ruellia tuberosa Rumex dentatus Rumex hastatus Rungia pectinata Saccharum officinarum Saccharum spontaneum Salix denticulata Salix tetrasperma Salvadora persica Salvia involucrata Salvia miltiorrhiza Salvia nubicola Salvia splendens Sambucus canadensis Sambucus mexicana Sambucus nigra Santalum album Sapindus saponaria Saussurea auriculata Saussurea candicans Saussurea obvallata Scadoxus multiflorus Scutellaria baicalensis Scutellaria grossa Scutellaria repens Sedum oreades Semecarpus anacardium Senna auriculata Senna occidentalis Senna siamea Senna sophera Sesbania bispinosa Sesbania grandiflora Seseli diffusum Sesuvium portulacastrum Setaria verticillata Shorea robusta Sida cordata Sida cordifolia Sida retusa Sida spinosa Sideritis hirsuta Silybum marianum Smithia ciliata Solanum chrysotrichum Solanum erianthum Solanum jasminoides Solanum melongena Solanum nigrum Solanum sisymbriifolium Solanum surattense Solanum torvum Solanum tuberosum Solanum villosum Sonchus oleraceus Soymida febrifuga Sphaeranthus amaranthoides Sphenoclea zeylanica Spiranthes australis Spiranthes sinensis Spondias pinnata Stellaria media Stellera chamaejasme Stephania japonica Sterculia alata Sterculia foetida Sterculia villosa Stereospermum tetragonum Stevia rebaudiana Striga asiatica Strophanthus boivinii Strychnos minor Strychnos nux-vomica Strychnos potatorum Suaeda maritima Suregada multiflora Swertia angustifolia Swertia bimaculata Swertia cordata Swertia paniculata Swietenia macrophylla Swietenia mahagoni Syzygium alternifolium Syzygium aromaticum Syzygium cumini Syzygium jambos Syzygium samarangense Tabebuia aurea Tabebuia avellanedae Talinum portulacifolium Tamarindus indica Taxus baccata Tecoma castanifolia Tephrosia calophylla Tephrosia purpurea Teramnus labialis Terminalia alata Terminalia catappa Terminalia chebula Terminalia elliptica Terminalia pallida Teucrium botrys Teucrium royleanum Thalictrum foliolosum Thespesia populnea Thunbergia erecta Thunbergia fragrans Thunbergia grandiflora Thymus linearis Tiliacora acuminata Tiliacora racemosa Tinospora cordifolia Tinospora crispa Tinospora sinensis Toona ciliata Trewia nudiflora Tribulus terrestris Trichodesma indicum Trichosanthes cucumerina Trichosanthes palmata Trichosanthes tricuspidata Trifolium repens Trigonella foenum-graecum Triumfetta rhomboidea Tylophora indica Uraria picta Urena lobata Urena sinuata Urginea coromandeliana Vachellia horrida Valeriana jatamansi Vanda tessellata Veronica serpyllifolia Viburnum coriaceum Vicia bakeri Vicia faba Vicia sativa Vigna radiata Vigna unguiculata Vinca rosea Viola rupestris Viscum album Vitex negundo Vitis vinifera Withania somnifera Wrightia tinctoria Wulfeniosis amherstiana Zamia furfuracea Ziziphus jujuba Ziziphus mauritiana
If you find objectionable content on this blog please Email me anandkumarreddy at gmail dot com I will remove it. The contents of this blog are meant for students and researchers of Indian system of Medicine for educational purpose and not for commercial use.

This site uses cookies from Google to deliver its services, to personalise ads and to analyse traffic. Information about your use of this site is shared with Google. By using this site, you agree to its use of cookies.